III B.Tech - II Semester – Regular Examinations – JUNE 2022

HEAT TRANSFER (MECHANICAL ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 5 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
- 4. All parts of Question paper must be answered in one place.

PART – A

- 1. a) Define Heat transfer? Mention its applications.
 - b) What is meant by steady state and unsteady state heat transfer?
 - c) Differentiate between Mean film temperature and bulk mean temperature.
 - d) How film wise differ from drop wise condensation.
 - e) What are the assumptions made to calculate radiation exchange between the surfaces?

PART – B <u>UNIT – I</u>

- a) Explain the mechanism of thermal conduction in gases, 6 M liquids and solids.
 - b) Explain in brief about Conduction, Convection and 6 M Radiation with its physical governing laws for heat transfer.

OR

3.	a)	Explain the following terms	6 M
		(i) Thermal Conductivity and,	
		(ii) Thermal Diffusivity.	
	b)	Derive the general heat conduction equation in	6 M
		cylindrical coordinates.	

<u>UNIT – II</u>

- a) Derive equation of heat transfer by conduction through 6 M composite wall.
 - b) A hollow cylinder of 5cm ID and 10 cm OD, has an 6 M inner surface temperature of 200 °C and an outer surface temperature of 100 °C. If the thermal conductivity of the cylinder material is 70 W/m K. Determine the heat flow through the cylinder per unit length.

OR

- 5. a) State and explain
 - (i) Critical thickness of insulation,
 - (ii) Efficiency of fins, and
 - (iii) Effectiveness of fins.
 - b) A steel rod (k = 30 W/m 0 C) 1 cm in diameter and 5 cm 6 M long protrudes from a wall which is maintained at 100 0 C. The rod is insulated at its tip and is exposed to an environment with h = 50 W/m² 0 C and t_a = 30 0 C. Determine the fin efficiency, temperature at the tip of fin and the rate of heat dissipation.

UNIT-III

6. a) For natural convection heat transfer, show that Nu = f(Gr, Pr).

6 M

6 M

b) A horizontal fluorescent tube which is 3.8 cm in 6 M diameter and 120 cm long stands in still air at 1 bar and 20 0 C. If the surface temperature is 40 0 C and radiation is neglected, what is heat transfer rate by convection? Use Nu = 0.53 (Gr.Pr)^{0.25}.

OR

- 7. a) Derive momentum equation for hydrodynamic 6 M boundary layer over a flat plate.
 - b) Engine oil at 60 °C flows with a velocity of 2 m/s over a 6 M 5 m long flat plate whose temperature is 20 °C.
 Determine the drag force exerted by oil on the plate and the rate of heat transfer for a plate width of 1 m.

<u>UNIT – IV</u>

 Temperature Difference (LMTD) for counter flow heat exchanger stating the assumption made. b) In a food processing plant, a brine solution is heated from -12 °C to -6.5 °C in a double pipe parallel flow heat exchanger by water entering at 35 °C and leaving 	6 M					
 b) In a food processing plant, a brine solution is heated from -12 °C to -6.5 °C in a double pipe parallel flow heat exchanger by water entering at 35 °C and leaving 	6 M					
from -12 ${}^{0}C$ to -6.5 ${}^{0}C$ in a double pipe parallel flow heat exchanger by water entering at 35 ${}^{0}C$ and leaving	6 M					
heat exchanger by water entering at 35 ^o C and leaving						
42050 -41 -410 -101 -101 -101 -101						
at 20.5 0 C at the rate of 9 kg/min. Determine the heat						
exchanger area for overall heat transfer coefficient of						
860 W/m ² K. Take specific heat of water 4186 J/kg K.						
OR						
9. a) Discuss various regimes of pool boiling.	6 M					
b) A vertical tube of 50 mm outside diameter and 2 m long	g 6 M					
is exposed to steam at atmospheric pressure. The outer						
surface of the tube is maintained at the temperature of						

84 ^oC by circulating cold water through the tube.

Determine the rate of heat transfer and also the condenser mass flow rate.

<u>UNIT – V</u>

10.	a)	Explain the following as applied to radiation heat	6 M
		transfer.	

- (i) Wien's displacement law
- (ii) Lambert's cosine law
- (iii) Shape factor
- b) A pipe carrying steam having an outside diameter of 6 M20 cm runs in a large room, and is exposed to air at a temperature of 30 0 C. The pipe surface temperature is 200 0 C. Find the heat loss per meter length of the pipe by convection and radiation taking the emissivity of the pipe surface as 0.8.

OR

- 11. a) Derive the expression for radiant heat exchange 6 M between two finite black surfaces by radiation.
 - b) Emissivities of two large parallel plates maintained at 6 M800 °C and 300 °C are 0.3 and 0.5 respectively. Find the net radiation heat exchange per square meter for this plate. Find the percentage reduction in heat transfer when a polished aluminum radiation shield ($\epsilon = 0.05$) is placed between them. Also find the temperature of shield.